Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice.
نویسندگان
چکیده
Diurnally active golden spiny mice (Acomys russatus) and nocturnal common spiny mice (Acomys cahirinus) coexist in hot rocky deserts of Israel. Diurnal and nocturnal activities expose these species to different climatic conditions. Nonshivering thermogenesis (NST) capacity of individuals of both species immediately upon removal from the field exhibited seasonal changes, with no significant interspecific difference. Colony-reared mice of either species transferred in the laboratory from long to short photoperiod increased NST capacity, though to a lesser extent than observed in the seasonal acclimatization. The underlying biochemical mechanisms of short photoperiod acclimation differed between the species. In both Cytochrome-c oxidase (Cox) activity was higher in short as compared to long photoperiod. In short-photoperiod-acclimated A. cahirinus uncoupling protein (UCP) content in brown adipose tissue (BAT) was significantly higher than in long photoperiod, while in A. russatus there was no significant change. In A. russatus there was a significant increase in lipoprotein lipase (LPL) activity in BAT in short-photoperiod-acclimated individuals, while in A. cahirinus LPL activity was high under both acclimations. The low LPL activity in brown adipose tissue of desert-adapted A. russatus may facilitate lipid uptake in white adipose tissue, an advantage in desert conditions where food is scarce and irregularly distributed in space and time.
منابع مشابه
The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice
We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether th...
متن کاملMetabolic rate and respiratory gas-exchange patterns in tenebrionid beetles from the Negev Highlands, Israel.
This study correlates the pattern of external gas exchange with the diel activity of nine species of tenebrionid beetle from the Negev Desert, Israel. The study species are active throughout the summer months when daytime temperatures are high and no rain falls. There were no differences in standard metabolic rate, determined by flow-through respirometry, among the nine species. All the nocturn...
متن کاملStructure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment
Mangroves and seagrass beds are considered nurseries for juvenile fish, but little experimental evidence exists to elucidate which factors make them attractive habitats. A multifactorial field experiment on the use of these habitats by juvenile reef fish and their behaviour was performed during daytime with experimental units (EUs: 1 × 1 × 0.8 m), each representing a unique combination of the f...
متن کاملAcclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size.
Seasonal acclimatization and experimental acclimation to cold in birds typically results from increased shivering endurance and elevated thermogenic capacity leading to improved resistance to cold. A wide array of physiological adjustments, ranging from biochemical transformations to organ mass variations, are involved in this process. Several studies have shown that improved cold endurance is ...
متن کاملDefending body mass during food restriction in Acomys russatus: a desert rodent that does not store food.
Golden spiny mice, which inhabit rocky deserts and do not store food, must therefore employ physiological means to cope with periods of food shortage. Here we studied the physiological means used by golden spiny mice for conserving energy during food restriction and refeeding and the mechanism by which food consumption may influence thermoregulatory mechanisms and metabolic rate. As comparison,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological and biochemical zoology : PBZ
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2000